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AImtraet~as-permeable solid propellants possess great potential for producing high thrusts 
during extremely short time intervals. The paper presents a theoretical model describing the 
important physical phenomena taking place in both gaseous and solid phases in such two-phase, 
unsteady, reactive-flow systems. The governing equations were derived in the form of coupled, 
non-linear partial differential equations and the resulting formulation was compared with those 
used by previous authors. A stable, fast-converging, fully-implicit numerical method, first proposed 
by Spalding and implemented in a general-purpose computer program, was used to solve the 
equations, so that effects of importance can be studied. Solutions are presented that predict the 
pressure wave build-up and accelerating flame front for beds of granulated solid propellants fixed 
in a rigid enclosure, and in gun barrels with an accelerating projectile. The results show that the 
flame front accelerates and the rate of pressurization increases substantially in the downstream 
direction. Some discussion is given of the sensitivity of these predictions to the assumed constitutive 
relations for interphase heat and momentum transfer and the solid burning-rate law. It is argued 
that the controversy surrounding the hyperbolicity of the equations, which has delayed progress 
towards theoretical prediction of two-phase flows, is ill-founded, since the equations are shown to 
possess unique solutions, as indeed do the physical systems they represent. 

1. INTRODUCTION 

I.I. The Problem Considered and Its Practical Relevance 

The present study is concerned with the prediction of the transient phenomena following 
ignition of granular propellants. The following transient phenomena occur in a few 
milliseconds: penetration of hot gases into the voids, convective heating of granules to 
ignition, granule compaction and rapid pressurization. The mass generated in the ignition 
region accelerates the flame forward, with the region behind the flame rapidly increasing 
in pressure as more and more mass is being generated. The problem of flame spreading 
in porous propellant charges is obviously important in the design and analysis of 
propulsion systems. 

In internal ballistics, the initial loading of the solid propellant is an important question. 
A low initial loading may not impart a final impact strong enough to deliver the shell to 
a desired distance. On the other hand, a high loading may lead to an uneconomical process 
owing to the fact that a tightly packed bed would have an inferior surface area to volume 
ratio to permit complete burning of the propellant. A choice of the optimum initial loading 
can be achieved only with sufficient quantitative understanding of the physical and 
chemical processes involved. 

Two types of similar problems are considered here; the first involving a chamber with 
a moving projectile, and the second with rigid boundaries. 

1.2. Objectives of the Study 

The ability to calculate the transient dynamics resulting from pressure wave formation 
and flame spreading in a bed of small grain propellant is the motivation for this work. 
Therefore, the objectives of the study are: (a) to formulate a theoretical model describing 
the important physical phenomena in question, which allows solutions under all conditions 
of practical relevance; (b) to solve the associated equations by a stable, fast convergent 
numerical algorithm; and (c) to demonstrate that results obtained for typical problems are 
plausible. 

The following discussion and results presented refer only to one-dimensional problems. 
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1.3. Previous Work and the Present Contribution 

The physical and chemical processes taking place in internal ballistics phenomena are 
complex, and their experimental study is difficult to perform and subject to high degrees 
of uncertainty and inaccuracy. Due to the above complexities, several theoretical ap- 
proaches have been proposed. 

The theoretical methods can be classified into four categories: (1) statistical models 
(Buyevich 1971, 1972a, b); (2) continuum-mechanics models (Krier et al. 1974, 1976); (3) 
formal averaging models (Gough 1974a); and (4) two-phase fluid-dynamic models (Kuo 
et al. 1973). The advantages and disadvantages of each of the above methods are analysed 
by Kuo et al. (1976), Koo & Kuo (1977) and Krier & Kezerle (1977). 

The method employed in this study follows the approach of Spalding (1979a), which 
is developed by formulating the governing equations on the basis that mass, momentum 
and energy fluxes are balanced over control volumes occupied by space-sharing inter- 
spersed continua. According to that concept, distinct phases are present within the same 
space (although never at precisely the same time), their shares of space being measured 
by their "volume fractions". 

The resulting differential equations differ from those of previous authors in several 
respects. In particular: 

(a) The gas pressure gradient term is included in the solid-phase momentum 
equation. Hughes (1976) has argued that such a term results in the 
mechanical set being non-hyperbolic. Krier & Kezerle (1977) adopted that 
argument and, in order to obtain solutions to the equations, found it 
necessary to neglect the above term. However, the present work proves that 
stable and meaningful results can be obtained when solving the full 
equations. 

(b) The pressure gradient term is written as the partial gradient of pressure and 
not as the gradient of a partial pressure. 

(c) A solid-phase energy equation is used, symmetric with the gas-phase energy 
equation, instead of the common approach of solving the unsteady heat 
conduction equation for the solid particle and monitoring the heat gained 
from the gas in the form of convective heat transfer (Gough 1974a; Kuo 
et al. 1976). The latter approached was not deemed acceptable for the 
present work, for the reasons discussed by Krier & Kezerle (1977). 

A fully-implicit finite-difference scheme was employed for the numerical solutions, with 
none of the time-step limitations imposed by the explicit methods used by previous authors 
(Krier & Kezerle 1977). 

The predictions for the rigid enclosure problem made by the present model are found 
to be in fair agreement with the predictions of Krier & Kezerle (1977) for similar con- 
ditions. There are no predictions available in the literature for the moving-shell problem. 

2. THEORETICAL MODEL 

2.1. The Physical Problem 

The basic features of the gun barrel are outlined in figure 1. A cylindrical domain is 
considered, enclosed by the gun barrel and the base of the projectile, and containing a solid 
propellant in powder form and a gas. The solid propellant comes in various shapes and 
sizes. In the past, propellants in cord form were in favour. The present-day propellants 
are still cord-shaped but with slotted tubes. However, spherical forms cannot be ruled out 
(Koo & Kuo 1977), and this is the form assumed in this study. 

Ignition is provided by inflow of hot gas at the base of the cylinder. The gas is forced 
into the granular bed through a multiply-perforated nozzle, causes a compaction of the 
granular bed near the entrance region and also heats up the nearby granular propellants 
to ignition. The so-ignited propellants give off more hot gases which are pushed forward 
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Gun borrel 

Hot gas for ignition 

Figure  1. Schemat ic  d r awing  of  a gun barrel.  

by the pressure gradient to ignite more propellants. Thus, a steep pressure gradient is 
created inside the combustion chamber and the accelerated gaseous products cause the 
shell to move. 

2.2. The Dependent and Independent Variables 

The following are the dependent variables of the problem: 

• gas and particle velocities; 
• pressure; 
• particle and gas concentrations; 
• particle and gas enthalpies. 

The independent variables are: 
• the distance measured along the barrel, y; 
• the time, t. 

2.3. The Partial Differenth~l Equations 

The equations are derived by considering the balance of fluxes over a control volume 
small enough to give the desired spatial distributions in the complete system, yet large 
enough to contain many solid particles, so that the averaged particle velocity and volume 
fraction are meaningful. The control volume, at any particular time, can be regarded as 
containing a volume fraction r~ of the ith phase, so that if there are n phases altogether, 

~ r  i = 1. [1] 
i = 1  

Each phase is treated as a continuum in the control volume under consideration. The 
phases "share" the control volume, and they may, as they move within it, interpenetrate. 

In the following presentation of the differential equations, the dependent variables will 
be denoted by lower case letters for the gaseous phase and upper case for the solid phase. 
For variables other than the main dependent variables (e.g. density), the notation is 
subscript 1 for the gaseous phase and subscript 2 for the solid phase. 

In summary, the important assumptions upon which this flow model is based are listed 
below: 

(1) 

(2) 
(3) 

(4) 

(5) 
(6) 

the two phases are assumed interdispersed and coupled by appropriate 
interaction terms; 
each phase is a continuum, so that derivatives are uniquely defined; 
when combustion of particles causes mass transfer between the phases, 
the solid phase always loses mass while the gas phase gains it; 
all gases obey the non-ideal Noble-Abel equation of state with a vari- 
able co-volume; 
heat transfer to the particles due to radiation is neglected; 
the density of the solid phase is constant; 
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(7) viscous effects other than interphase friction are negligible; 
(8) the specific heats are assumed constant. 

Except for the first two, these assumptions are made only for simplicity, and by no means 
represent limitations of  the model. 

(a) The mass-conservation equations 

Gas-phase mass equation 

O d 
8t (p,r) + fffy (p,rv) = rh~", ; [2] 

Particle-phase mass equation 

c~t (p2R ) + (p2RV) - m 2 1 ,  [31 

where 

r, R = volumetric fractions of  gas and solid, respectively, 

P,, P2 = density of  gas and solid, 

v, V = velocity of  gas and solid 

and 

m2"l = rate of  mass transfer per unit volume from the solid to the gaseous phase. 

The volumetric fractions are related by 

r + R = i. [41 

(b ) The conservation o f  momentum equations 

Gas-phase momentum equation 

& ~ 8p 
(p,rv ) + -~y (p,rv 2) = 

&t 

Particle-phase momentum equation 

where 

- - f ( v  - V) + rh~2"l V - F,w; 

O (pzRV)+~---f (p2RV 2) Op Or .... 8t = - R ~y - ( V  - v ) f  - R fffy - r2w - mz~ V; 

[5] 

[6] 

The formulation of  the pressure terms has occasioned some uncertainty among writers 
on this subject; and it is sometimes thought that different pressures ought to be provided 
for each phase. It is not especially useful to do so; therefore, a single pressure appears in 
both equations, and an additional "intergranular force" term in one of the equations. This 
term arises from the "particle-packing" equation, governing the pressure in the solid phase 
as its volume fraction approaches the physically attainable limit: 

P = p + T4:R); [7] 

p = the pressure which is regarded as being "shared" between the phases, 

f = the interphase friction factor 

r = the intergranular stress. 

and 

F~w, F2w = friction forces acting on the gas and particles, respectively, by the gun-barrel 
wall. 
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wherein the solid phase sustains the extra stress 3, this being a function of the volume 
fraction, R, to be defined in the next section. 

Further inspection of the above equations reveals that the term p Or/~y, which frequently 
occurs in the literature, is missing. This is because use of O/Oy (rp) instead of r Op/c~y is 
simply erroneous. A term like p Or/Oy implies the presence of a momentum source 
proportional to pressure whenever r is non-uniform. There is no physical mechanism which 
can produce it. A change in the general pressure level would alter such a source; so p would 
no longer be a relative variable. 

Finally, the partial gradient of gas pressure is included in the solid-phase momentum 
equation. Hughes (1976) has argued that this term results in a non-hyperbolic system and 
that one might experience difficulties in numerical integration. Krier & Kezerle (1977) 
reported that stable and well-behaved results were never really achieved when this term 
was included; pressure and velocity oscillations usually occurred, similar to the problem 
reported by Dimitstein (1976) and Krier et al. (1976). Using the present solution algorithm, 
first proposed by Spalding (1976), such problems were never encountered; stable and 
well-behaved results were achieved for all circumstances, even with very coarse mesh sizes. 

(c) The conservation of energy equations 
Let h, H stand for the stagnation enthalpy of the gas and solid phases per unit mass, 

respectively, by which is meant the thermodynamic enthalpy plus the kinetic energy of the 
phase plus any potential energy associated with the position of the fluid in a force field. 
Then, the first law of thermodynamics leads to the following equations: 

Gas-phase energy equation 

O[(p,h-p)r]Oot ( V 2 )  " h s + ~ -  +~fy (pirvh)=f( v - -  V)V-- Oll--q,2-]-rhJ'l -Q lw;  [8] 

Particle-phase energy equation 

Ot[(p2H-e)R]+T-(p2RVH)=f(g-v)v-g2z+gl l2-rhj;  hs+ -Q2,~; [9] 

where 

hs=H+hc, 

hc = the heat of  combustion of the solid particles, 

H,~, H2z = the rate of heat transfer within the gas and solid phase, respectively, e.g. by 
conduction and viscous action, 

q~2 = heat loss to particles per unit time 

and 

Qlw, Q2w = the rate of heat loss of the gas and solid phase, respectively, to the gun-barrel 
wall per unit volume. 

For the present study, only the first, third and fourth terms on the r.h.s, of  [8] and [9] were 
included, the rest were assumed to be negligible by comparison. 

Other investigators [e.g. Kuo and his co-workers (Kuo & Summerfield 1974; Kuo et al. 
1976) and Gough (1974b)] did not use a particle-phase energy equation. Instead, they 
calculated the particle surface temperature by analysing the unsteady heat conduction in 
the solid phase. Kuo & Summerfield (1974) have made comments in defence of not writing 
a particle-phase energy equation. It is, however, questionable what mixture energy is 
being conserved when one does not write such an equation in a form symmetrical to the 
gas-phase energy equation as done here, and by Gulick (1975), Krier & Kezerle (1977) and 
Gokhale & Krier (1982). 
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(d) The particle-size calculation 

For the problems under consideration it is necessary to calculate the distribution 
throughout the field of the average local size of the particles. This necessity arises because, 
for example, the rate of burning depends strongly upon the size of the particles; and this 
size diminishes, of course, as the particles are consumed. A complete treatment of the 
problem involves treating the flow as a multiphase one, the particles being divided into 
subgroups characterized by having particle sizes lying between prescribed values; and, if 
so desired, each subgroup can be treated as having its own temperature and velocity. Such 
an analysis involves much computation, and is necessarily expensive. 

The approach followed instead, permits the average particle size to be computed by 
introducing a second solid volume fraction, R*, that is the volume fraction which the solid 
phase would have possessed at each point, in the absence of combustion; the velocities, 
however, being the same as the phase actually possesses. Therefore R*, obeys the following 
equation: 

8 8 ~- (p2R*) + ~y (p2R*V) = O. [ lO] 

The particle size is deduced from 

So = \ R * / / '  [11] 

where s stands for some linear dimension of the particle, and So is the value of s for the 
particles initially. Knowledge of s then permits the local values of the interphase 
heat-transfer coefficient, interphase friction coefficient and mass-transfer rate to be 
determined. 

Equations [2], [3], [5], [6], [8]-[10] form a system of coupled, non-linear, inhomogeneous 
partial differential equations. 

2.4. Constitutive Relations 

The above set of differential equations has to be solved in conjunction with observance 
of constraints on the values of the variables, represented by algebraic relations. These 
relations express physical laws of various kinds, governing the critical rate and interaction 
processes. These constitutive relations follow, in the form used for the present study. It 
should be mentioned that, although little emphasis is placed on these relations in the 
context of this paper, their proper form and function are essential for the realistic 
prediction of the two-phase flows under consideration. A detailed discussion on this subject 
is given in the original work of Gokhale & Krier (1982). 

2.4. I. Equations of state 

The Noble-Abel dense-gas law, also called the Clausius equation, 

1 b P ( P l - )  = R T I '  [12] 

is used as the equation of state for the gas phase, where • is the specific gas constant 
(286.69 J kg t K ~) and b is the co-volume which is a function of gas density. For the 
reported results, b is taken as constant. 

The statement of a constant density for the solid particles serves as the equation of state 
for the particles. 

2.4.2. The intergranular stress 

Propellant particles cannot be packed so closely as to occupy the whole of space (R = 1); 
instead, an intergranular stress arises which is transmitted through the packed granular 
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particles and keeps the particles apart. This is like a "pressure" which affects the propellant 
particles only. The above effect is handled by replacing the Op/Oy term in the particle-phase 
momentum equation by c~(p + z)/Oy, where z is the intergranular stress. The constitutive 
law used for the stress calculation is 

T = 0  for O<~R<~Rcn, 

and [13] 
r = K(R - Rent)" for Rcrit < R, 

w h e r e  Rcrit is a "critical" volumetric fraction, above which there is no direct contact 
between particles, and K is a constant representing the rate of change of stresses with 
respect to R, known from the properties and shape of the particles. In the present study, 
use is made of the value n = 1, i.e. the stresses are taken as a linear function of (R - R~nt). 
Of course, any other value of n could have been used equally well. 

2.4.3. The interphase friction coefficient 

Prescribed functions for the coefficient in the drag terms of [5] and [6] are used. The 
expression for the interphase friction force used for a control cell is a linear one, 

= ½fp, It, - VI ~R [14] F 

where f is an interphase friction parameter and As is the area of interphase contact, 

6R 
= [15]  

where Dp is the average diameter of the particles. 
This simple method was chosen, in view of the lack of reliable empirical correlations, 

because of its economy and convenience, and is by no means a limitation of the model. 
For example, the commonly used Ergun (1952) correlation, has very limited application 
to the combustion of granular propellants under high convective burning situations. 

2.4.4. The particle burning rate 

For the burning law, a simple, empirical pressure-dependent relation was employed, 
namely 

/ ; = E ( P ~  ", [16] 
\Pa tm, , /  

where Patm is the atmospheric pressure and E and n are constants. 
The production rate of gases from solid particles, rh2~, is therefore given by 

rh2' = Rp2tJ P , =  Dp ' [17] 

6 

where [S/V]e is the surface area/volume ratio for a single particle. 

2.4.5. Ignition criterion 

The criterion for particle ignition used in this study assumes ignition to have occurred 
when the surface temperature of a particle reaches a critical value, e.g. 

6 = 0  for Ts < Zig n 

and 

= E for Ts/> T~,.. [18] 

The surface temperature of the particles is determined by assuming a cubic temperature 
profile within the particle, as outlined below. 



920 N.C. MARKATOS 

2.4.6. The interphase heat- transfer  coefficients 

Although the equations solved for the transport of heat between the gas and particle 
phases are those of the phase enthalpies [8] and [9], it is convenient to think in terms of 
temperatures T, and T2, by introduction of the specific heats C~ and C2. 

Central to the following treatment is the concept of an interface between the two phases, 
with temperature T~. 

Inspection of [8] and [9] reveals that the following quantities need be calculated, since 
they appear as source/sink terms in the above phase-enthalpy equations: q~s, the heat input 
to the surface from phase 1; 0s2, the heat flow from the surface to phase 2 (solid particles); 
and rh2~, the mass transferred from phase 2 to phase 1. These quantities are related to the 
various temperatures by the following relations: 

and 

and 

(t,~ = a ~ ( T ,  - T ~ ) ,  [19] 

q.,2 = a2(T~ - T2) [20] 

/~21 = 0 f o r  T s < Tig n 

m2~ =f4~p~ for Ts i> T~g,, [21] 

where the "interface transfer parameters", a~ and a2, are heat-transfer coefficients 
multiplied by the interface area through which the transfer occurs, andf{-p-) is the function 
given by [18] above. 

An energy balance over a control volume enclosing the interface yields: 

Heat coming into the control volume = q~s + t / t 2 1 C 2 T 2 ,  

heat going out of the control volume = qs2 + m2jC2Ts 
and 

generation = m2,hc. 

Therefore 

qs2 - q~s = m2, [he - C2(Ts - -  7"2)]. [22] 

Combination of [19], [20] and [22] yields 

1 
Ts = ~ [azT2 -F a,T~ + rh2~(h ~ + C2Tz)], [23] 

• al 
q~s = -~ [a2(T, - T2) + m2~ C2(T~ - T2) - -  m2,hc] [24] 

and 

where 

a2 
(1s2 = v- [a,( T, - T2) + m2~hc], [25] 

= al + a2 + rh21C2. [26] 

The particle surface temperature, Ts, is crucial in determining when ignition occurs, 
according to [21] above. Its determination is made difficult by the fact that the heating of 
the particles by the hot gases does not penetrate far into the particle since the transient 
interval of the physical process is only a few milliseconds. Therefore, the temperature 
profile inside the particle has a very steep gradient and the particle surface reaches the 
ignition condition long before the thermal wave penetrates to the centre of the particle; 
or, in other words, T~ may change substantially whilst the bulk particle temperature, 7"2, 
changes very little. 

The approach used in this study is to determine the coefficient a2, in [20] for heat transfer 
from the surface into the particle, from 



C O M B U S T I O N  OF G R A N U L A R  P R O P E L L A N T S  921 

• T  
, qs= = a 2 ( T , -  T2)= - 2  dr , [27] 

where 2 is the thermal conductivity of the granular material, and the temperature gradient 
at the surface 

is determined by assuming a cubic temperature profile within the particle. 
The outcome of some lengthy algebra is the following relation: 

32 32 
[28] 

a 2 = - 6 - = 5  [ X/ 8 ( T a - T ~ ) ] '  
R 1 -  

where 

R = the radius of the particle, 

To = the initial temperature at its centre, assumed constant, 

and 

6 = the thermal wave penetration depth in a spherical particle, computed at each time 
step. 

The heat-transfer parameter al is estimated by assuming the Nusselt number equal to 2, 
which is a very doubtful assumption given the high Reynolds numbers encountered. Ts is 
then calculated from [23]. A Newton-Raphson iteration is used to derive a2 from the cubic 
particle temperature distribution. 

Again, as Gokhale & Krier (1982) observe, there is little in the literature that would 
provide an accurate expression. Such an expression should take into account the 
"blowing" into the thermal boundary layers adjacent to the particles (Gokhale & Krier 
1982). 

3. FINITE-DOMAIN EQUATIONS 

3.1. The Grid 

The finite-domain versions of the governing differential equations given above are derived 
by integrating the latter over the volume of a cell enclosing a grid node. The grid used 
in the present work is "staggered" as shown in figure 2, from which it will be seen that 
the control volume for continuity is different from that for momentum. For the variables 
ri and hi, these control volumes are the ones centred on grid nodes such as P (in figure 
2) and having faces which bisect the lines joining P to N and S at right angles. For the 
velocity components the control volumes are like those just described; but they are 
displayed in the direction y by distances which place the relevant velocity locations at their 
centres. The practice is conventional (Kurosaki & Spalding 1979; Patankar & Spalding 
1972). 

Control volume Control volume 
for continuity ~ 1 . ~ /  for momentum 

_ 

s.~__ __p- : . . . .  :N 
P X 

Figure 2. Control volume and grid nodes. 
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For the case of the moving projectile, the above grid was expanded at every time step, 
to follow the increase in the y range. 

3.2. The Equations 

The result of integrating the equations is expressed in terms of the values of the variables 
pertaining to grid points. This is done by way of interpolation rules, which do not 
significantly differ from those for single-phase prediction procedures (Kurosaki & Spalding 
1979; Patankar & Spalding 1972). 

The above operations result in a set of algebraic equations which have already been 
reported by Markatos et al. (1978), Spalding (1979a) and Kurosaki & Spalding (1979), and 
are not presented here. 

4. THE SOLUTION PROCEDURE 

The task for this problem is to determine sets of values, for all the points of the grid, 
for all the time instants considered, and for both phases, of: p, r, R, h, H at central grid 
points, and of v, V at velocity grid points. Because of the high degree of non-linearity and 
interlinkage of the equations, the task must be performed by iterative means. It is therefore 
necessary to use a reliably convergent successive-adjustment procedure. The procedure 
used is the IPSA (!nterphase slip algorithm) procedure of Spalding (1976), which was first 
applied to the steam-water flow in steam generators (Markatos et al. 1978). This is an 
implicit algorithm which anticipates the effects of a change in the local property of one 
phase on the properties of the other phase at the same location. An outline of the 
procedure is provided below. At each time interval, the solution procedure proceeds 
according to the following steps: 

(i) Determine the boundary conditions at the upper and lower boundaries 
of the y range, for all variables. 

(ii) Solve the finite-domain equations for the enthalpies of the two phases 
individually, by use of the partial-elimination algorithm (Spalding 1979a) 
(because of the strong linkage between those enthalpies). 

(iii) Solve the finite-domain equations for R at all grid points by way of the 
tridiagonal matrix algorithm (TDMA). 

(iv) Obtain the r values from [4]. 
(v) Determine the pressure distribution which is appropriate to the momen- 

tum equations of the two phases, added together. This is a simple 
forward-integration process along the y-direction. 

(vi) Using the pressure distribution, solve for the velocities of the two phases 
individually by the partial-elimination algorithm. 

(vii) Compute the consequent errors in the continuity equation for the two 
phases added together, and so formulate the "pressure-correction" 
equation. 

(viii) Solve for the pressure corrections by TDMA and apply to the velocities 
the resulting corrections, proportional to pressure-correction differences. 

(ix) Return to step (ii), and repeat the cycle of computations until the 
continuity errors computed at step (viii) are sufficiently small. 

(x) Proceed to the next time interval, and start the cycle of operations again 
from step (i). 

More details may be found in Markatos et al. (1978), Spalding (1979a, b) and Markatos 
& Kirkcaldy (1983). 

This procedure was found to converge satisfactorily for the problems under consid- 
eration, over a wide range of conditions. Use was made of a general computer program, 
PHOENICS (Spalding 1981; Rosten & Spalding 1986), that implements the above 
procedure, while allowing the user to perform easily his own particular modelling. 
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5. R E S U L T S  

5.1. Introduction 

The cases considered in the present work fall into the following two classes: 

(i) two-phase combustion in a rigid enclosure (i.e. fixed grid); and 
(ii) two-phase combustion in a gun barrel with an accelerating projectile (i.e. 

expanding grid). 

Extensive studies on the variations of the parameters involved (e.g. constants in the 
burning-law, intergranular stress and interphase drag constitutive expressions) were 
carried out. For all the computations performed, convergence was fast and monotonic. 
The results presented here correspond to those values of the parameters, which appeared 
to be the most realistic during the parametric studies. 

Table 1 summarizes the input used to carry out the typical results shown below, 
including initial conditions, for the rigid enclosure problem. The data used for this problem 
correspond closely to those of Krier & Kezerle (1977). 

Table 2 presents the same information for the accelerating projectile problem. The 
probjectile velocity and acceleration were calculated, at every time step, from the computed 
force acting on its base. Both problems are specified after a time, chosen as t = 0, in which 
at one end of the domain an ignition stimulus is assumed by specifying a region of high 
pressure, hot gases. This "ignition" region was taken to be about 2.5% of the total domain 
length. The heat transfer from the hot gases to the particles raises the particle surface 
temperature, until the ignition temperature is reached, initiating combustion. 

The main results presented are the pressure distribution as time progresses, the gas and 
particle velocities, the gas volume fraction and the temperature histories of both phases. 

5.2. Computational Details 

The presented results are the outcome of careful grid and time-step independence tests. 

Table 1. Input data used in the numerical computat ions  for the rigid-enclosure problem 

Parameter Value 

Geometry 
Gas-space length, L 

Physical properties 
Density of  gas, p~ 
Density of  propellant particles, P2 
Specific heat ratio of  gas, 
Specific gas constant,  1~, 
Ignition temperature, Tig n 
Chemical energy released, h c 
Specific heat of  gas, C L 
Specific heat of  propellant particles, C= 
Thermal  conductivity of  solid particles 

Constitutive relations 
Co-volume of gas, b 
Propellant burning-rate proportionally constant,  E 
Propellant burning-rate index, n 
lntergranular  stress proportionality constant,  K 
Intergranular stress index, n 
Interphase friction parameter,  f 
lnterphase heat-transfer parameter  on the gas side, a t 
Critical volume fraction, Rcrit 

Initial conditions 
Pressure, p 
Bulk temperature of  solid particles, T~ 
Temperature at the centre of  a particle, T~ 
Temperature of  gas, T~ 
Temperature of  igniting gas at the lower end of  the domain 
Pressure of  igniting gas 
Volume fraction of solid, R 
Velocities of  gas and particles, ~,, V 
Initial average particle diameter 

0.0762 m 

1.124 kg m 3 
1580.55 kg m -3 
1.252 
286.69 J kg -I K -I 
350 K 
5.49 × 106J kg -t 
1000 j kg -I K- I  
1467.6 j kg-I  K - i  
0.2243 kg m s-3 K -t 

1.0784 x lO-3m3kg i 
104 
1.0 
109 
1.0 
106 
103 
0.6 

105Nm 2 
300 K 
298 K 
300 K 
3300 K 
1.065 × 106Nm '- 
0.6 
0.0 
4.12 × 10 4m 
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Table 2. Input data used in the numerical computat ions for the accelerating projectile problem 

Parameter Value 

Geometry 
Gas-space length at time 0, L 

Physical properties 
Density of  gas, Pt 
Density of  propellant particles, P2 
Specific heat ratio of  gas, y 
Specific gas constant,  P, 
Ignition temperature, T~g n 
Chemical energy released, h c 
Specific heat of  gas, C~ 
Specific heat of  propellant particles, C 2 
Thermal conductivity of  solid particles ~, 

Constitutive relations 
Co-volume of gas, b 
Propellant burning-rate proportionality constant,  E 
Propellant burning rate index, n 
Intergranular stress proportionality constant,  K 
lntergranular stress index, n 
Interphase friction parameter, f 
lnterphase heat-transfer parameter on the gas side, a~ 
Critical volume fraction, Rcr . 

Initial conditions 
Pressure, p 
Bulk temperature of  solid particles, 7 2 
Temperature at the centre of  a particle, T~ 
Temperature of  gas, T~ 
Temperature of  igniting gas at the lower end of the domain 
Pressure of  igniting gas 
Volume fraction of  solid, R 
Velocities of  gas and particles, v, V 
Initial average particle diameter 

Other input 
Mass of projectile (used in calculating its acceleration 

from the pressure difference at its base and the atmospheric) 

0 .2m 

1.124 k g m  3 
1000 kg m 
1.4 
286.69 J kg i K i 
350 K 
5 .49x  106Jkg t 
1000Jkg IK i 
1467.6Jkg IK i 
0.2243 kg m s 3K-~ 

1.0784× 10 3m 3kg i 
104 
1.0 
109 
1.0 
106 
103 
0.5 

10SNm 2 
300 K 
298 K 
300 K 
3300 K 
1.065 × 106 N m 2 
0.5 
0.0 
4.12 × 10 4m 

5 kg 

It was found that grids consisting of 42 or more control cells gave nearly identical results, 
and the same was true for time steps of  7 x 10 7 s or less. A grid of  42 control cells and 
a time step of 7 x 10 7 s was therefore chosen to carry out the typical results shown below. 

The CPU time taken is 6.87 x 10 ~s per grid node/per sweep/per time step/per main 
variable, on a Perkin-Elmer 3220 minicomputer. This time is equivalent to 4.29 x 10 4s 
on an IBM 30/32 system. Typically, 10 sweeps were required to obtain full convergence 
at each time step. Therefore, a full run simulating a transient of  200 time steps, and using 
the 42 control cells grid, requires about  4 min CPU time on an IBM 30/32 system. 

The above times include of course the computat ion of the auxiliary variables: T, p, th2~ 
and T~. 

5.3. Results for the Rigid-enclosure Problem 

Figures 3-10 present the distribution histories of  the fluid-dynamic and heat-transfer 
variables in a rigid enclosure, 0.0762 m long, with an initial solid loading of 60%. Other 
pertinent input data to the calculations are indicated in table 1. 

Figure 3 outlines the calculated pressure distributions at five different times (39.2, 50.4, 
56.0, 64.4 and 70 fls). As in previous work related to this problem (see Krier et al. 1977), 
the appearance of a "continental divide" in the interior of  the bed is pronounced. The 
predictions indicate a rapid build-up of pressure leading to steep pressure gradients, 
forming a shock-line front. In addition, the average pressures behind the front are very 
high. A peak pressure of  4.6 x 109Nm 2 is predicted at t = 70#s.  This is in good 
agreement with the peak pressure of  4.9 x 109 N m -2 (720 kpsia) predicted by Krier & 
Kezerle (1977) for a similar problem. Furthermore, the overall pressure distribution history 
predicted by the present method is in good qualitative and quantitative agreement with 
that of Krier & Kezerle (1977). However, the present distributions lag those of Krier & 
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Figure 3. Pressure distribution history for the rigid-enclosure problem. 

Kezerle by about 13/~s. A likely explanation is that the initial "ignition stimulus" is 
imposed over different lengths in the two studies. For the present predictions, the 
"ignition" region was taken to be about 2.5% of the total chamber length. Krier & Kezerle 
do not mention their "ignition" region. However, Krier et al. (1977) used 15% in a study 
of a similar problem. This much greater "ignition region" would explain the observed time 
lag. 

During the above pressure build-up, the ignition front accelerates moderately at first and 
then more rapidly, as shown in figure 4, which presents the locus of that front. The front 
accelerates from a speed (slope of the y - t  locus) of 0.7-1.39mmkts -~ after about 37ps 
and to 2 mm/~s -t after about 60 #s. This is to be compared with 0.83 mm/~s -~ around 
t = 20 ps and 1.97 mm #s -~ around t = 50 #s, predicted by Krier & Kezerle (1977). Also 
shown in this figure is the locus of the peak pressure. For the small initially ignited 
portion of the bed, the flame front accelerates slowly into the bed, while for some time 
(around 35/~s) the peak presure remains at the ignited end, near y = 0. However, at around 

i 

0.0672 V, = 2 O0 m ~ . . ~ l /  x' 

/ 
0.0508 

~ 0.0381 
1 . 3  
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" 00127 ~ ' ~ 0 " 7 " ' ' "  / I  
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Time (F~s) 

Figure 4. Flame-front and pressure-front loci for the pressure distributions indicated in figure 3. 
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Figure 6. Gas velocity distribution history. 

40#s in time, the pressure front begins to move into the bed and accelerates rapidly 
towards the ignition front. Should the pressure front precede the flame front, then 
detonation would start. This did not occur within the time interval studied herein. 

Figure 5 presents the predicted values of pressure-time traces at an upstream location, 
y = 0.0117m, and a downstream one, y = 0.0703 m. The pressurization process at the 
downstream portion lags that at the upstream but it increases faster and eventually 
overtakes the upstream pressure trace. This is consistent with experimental data obtained 
from pressure transducers for similar test situations, as reported by Koo & Kuo (1977). 

Figures 6 and 7 show the gas velocity and the propellant-particle velocity distributions 
at the chosen times. As might be expected, a peak develops in the velocity profile driven 
by the pressure gradient, which develops as a consequence of the steep pressure front 
arriving at the various locations. Also worth noting are the extreme gas velocities, often 
exceeding 1500 m s -t, and the fact that peaks in particle velocity lag behind peaks in gas 
velocity at any given time. The particle velocities are in general lower than the gas velocity, 
since the inertia of the particles is greater than that of gas. Comparison of figures 6 and 
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Figure 7. Particle velocity distribution history. 
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Figure 8. Gas temperature distribution history. 
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Figure 9. Particle temperature distribution history. 

7 with the corresponding figures of Krier & Kezerle (1977) reveals that there is good 
qualitative and quantitative agreement. For example, the predicted maximum gas velocity 
is 1970 m s -~, compared with the 2100 m s -~ of Krier & Kezerle. However, the present 
distributions lag behind the distributions of Krier & Kezerle by about 13/~s, which is 
consistent with the time lag observed in the pressure distribution, explained above. 

Figures 8 and 9 present gas and particle temperature distribution histories. Due to 
combusion, the gas temperatures are generated at very high values (>6000 K). These 
temperatures decay as the gas loses heat to the solid by convection into the bed interior. 
Later, as the pressure front steepens, the gas is compressed to values (~ 8000 K) exceeding 
their values at the lower part of the domain. The steady increase in the particle temperature 
is due to convective heat transfer. Comparison of figures 8 and 9 with those of Krier & 
Kezerle reveals that there are differences in the two sets of results, particularly in that the 
present particle temperature distribution peaks abruptly after about t = 64.6 #s, near the 
top of the chamber, a feature which appears in Krier & Kezerle's results near the bottom 
of the chamber at t = 100.6 #s. [figure 4.15 of Krier & Kezerle (1977)]. The unrealistically 
high gas temperatures are due to assumptions 4 and 8 in section 2.3, which preclude the 
flow of energy into dissociation of the gaseous combustion products. The rather large 
particle temperatures predicted at later times are a consequence of the surface/volume ratio 
increasing inversely with particle diameter, as the particles burn out. Therefore, the particle 
temperature predictions are spurious as r--* 1.0, since there are no particles left; but then 
its value does not influence the convective flame spreading significantly. 

The final predictions presented for the rigid-enclosure problem are the gas volume- 
fraction distribution histories shown in figure 10. The gas volume-fraction profiles show 
that near the lower end of the enclosure the porosity increases fairly rapidly. This is due 
to both a reduction in volume of the particles due to burning and the forward motion of 
these particles being carried along by the gas. Subsequently, the forward drag on the 
particles results in their compaction further downstream, to loadings greater than the 
original 60%. The present distributions are in good qualitative and quantitative agreement 
with those of Krier & Kezerle (1977), and they lag them by about 13 #s, which is consistent 
with the time lag previously discussed. 

5.4. Results for the Accelerating Projectile Problem 

Figures 11-19 present the distribution histories of the fluid-dynamic and heat-transfer 
variables in a gun barrel 0.2 m long, with an initial solid loading of 50%. Other pertinent 
input data to the calculations are indicated in table 2. 
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Figure 1 ! presents the calculated pressure distributions at five different times (30, 60, 
90, 120 and 150 #s). Beginning with the trace t = 30 #s,  the predictions indicate a build-up 
o f  pressure leading to steep pressure gradients which become steeper with increasing time, 
from the increased gasification rate. At t = 120#s,  the pressure achieves an overall 
maximum of  about 2.5 x l 0  9 N m 2, and subsequently a steep pressure reversal is predicted 
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Figure 12, Projectile acceleration and gas-space expansion history, 
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Figure 13. Flame-front and pressure-front loci for the pressure distributions indicated in figure 11. 

after the pressure front strikes the base of the projectile, when nearly all particles have been 
consumed. The pressure level then decreases as the projectile moves forward, and the gas 
space increases. A new pressure reversal is predicted after the pressure front strikes the 
lower end of the gun barrel at about t = 180 # s, and a pressure peak strikes again the base 
of the projectile at around t = 280 #s. This pressure peak is this time lower than before 
at about 1.75 x 109Nm -2. The above pressure behaviour agrees qualitatively with 
observations behind projectiles, and is reflected in the projectile acceleration variations 
which are indicated in figure 12, together with the rate of  domain expansion. 

During the above pressure build-up, the ignition front accelerates from a speed of about 
2.1-3.13 mm #s -j after about 66 s (figure 13). Also shown in figure 13 is the locus of the 
peak pressure. For the small initially ignited portion of the bed, the flame front accelerates 
into the bed, while for some time (around 42/ts) the peak pressure remains at the ignited 
end, near y = 0. 

After t---42/as, the pressure front moves into the bed and accelerates towards the 
ignition front with a speed of around 3.13 mm/~ s- ~, i.e. at the same speed as the final flame 
front, indicating that there will not be a cross-over of  the two fronts. 

Figure 14 presents the predicted pressure-time traces at an upstream location, 
y =0 .025m,  and a downstream one, y =0 .175m.  The pressurization process at the 
downstream portion again lags behind that at the upstream; but it increases much faster, 
overtaking the upstream trace. 

Figures 15 and 16 show the gas velocity and the particle velocity distributions at four 
chosen times, up to 120 # s, when nearly all particles are consumed. Again, a peak develops 
in the velocity profile driven by the pressure gradient, and peaks in particle velocity lag 
behind peaks in gas velocity at any given time. Worth noting is the negative gas velocity 
at the top of the barrel at t = 120 #s. This reverse flow of  gas causes the pressure trace 
of t = 120#s to cross that of  t = 90Vs. 

Figures 17 and 18 show the temperature distributions for gas and particles. Due to 
combustion, the gas temperatures are generated at very high values ( ~  6000 K). These 
temperatures decay as the gas loses heat to the solid by convection into the bed interior. 
Later as the peak pressure is reached, and the particles are nearly all consumed, the gas 
is compressed to values (,~ 7500 K) exceeding their values at the lower end of the gun 
barrel. 

The increase in the particle temperature is due to convective heat transfer. The same 
comments given in the previous section for the unrealistically high temperatures apply here 
also. 
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Figure 15. Gas velocity distribution history. 

The final predictions presented for the accelerating projectile problem are the gas 
volume-fraction distribution histories shown in figure 19. The gas volume-fraction profiles 
show that, near the lower end of the gun barrel, the porosity increases rapidly. This is again 
due to both a reduction in volume of the particles due to burning and the forward motion 
of these particles. No compaction of particles to loadings greater than the original 50% 
is observed, and this is a difference between the rigid enclosure and the accelerating 
projectile results. Nearly all particles have been consumed by around t = 120 #s. 
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Figure 16. Particle velocity distribution history. 
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Figure 19. Gas volume-fraction distribution history. 

6. CONCLUSIONS 

A self-consistent theoretical model is described for the combusion of mobile granular 
propellants. A stable, fast-converging numerical scheme is used for solving the complete 
system of equations. It is found unnecessary to eliminate terms from the equations in order 
to obtain meaningful results. No numerical instability was experienced over a wide range 
of applications, thus no artificial smoothing was necessary. It appears therefore that the 
stability problems experienced by previous workers were due to the solution schemes used 
rather than any intricacies in the equations set. 

A computer code, PHOENICS, incorporating the theoretical model, has been applied 
for the computation of two typical cases of two-phase phenomena occurring in gun barrels. 
The results are shown to be physically plausible. The transient wave phenomena and flame 
spreading are predicted well by the model, which indicates that the rate of pressurization 
increases in the downstream direction and the pressure peak developed travels down- 
stream, as expected. 

The model is general and applicable also to two- and three-dimensional problems. Work 
for such cases has already been reported (Markatos & Kirckaldy 1983). It is concluded 
that the mathematical formulation of the gun-barrel two-phase flow considered is a 
satisfactory one, and that the solution procedure is a reliable and economical one. There 
are no known problems associated with the mathematical model. The remaining problems 
are associated with the physical processes of the two-phase flows, namely the heat, mass 
and momentum transfer between the phases (Gokhale & Krier 1982). More work is 
required to review the literature for reliable experimental correlations on the above 
processes and to establish their effects on the model predictions. Indeed, much more work 
is required experimentally in establishing those experimental correlations. New hypotheses 
are needed, guided by experimental observations. Numerical computations of the present 
kind can effect these comparisons. 
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